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Abstract

Objective: To develop an automated, physiologic metric of immune effector

cell-associated neurotoxicity syndrome among patients undergoing chimeric

antigen receptor-T cell therapy. Methods: We conducted a retrospective obser-

vational cohort study from 2016 to 2020 at two tertiary care centers among

patients receiving chimeric antigen receptor-T cell therapy with a CD19 or B-

cell maturation antigen ligand. We determined the daily neurotoxicity grade for

each patient during EEG monitoring via chart review and extracted clinical var-

iables and outcomes from the electronic health records. Using quantitative EEG

features, we developed a machine learning model to detect the presence and

severity of neurotoxicity, known as the EEG immune effector cell-associated

neurotoxicity syndrome score. Results: The EEG immune effector cell-

associated neurotoxicity syndrome score significantly correlated with the grade

of neurotoxicity with a median Spearman’s R2 of 0.69 (95% CI of 0.59–0.77).
The mean area under receiving operator curve was greater than 0.85 for each

binary discrimination level. The score also showed significant correlations with

maximum ferritin (R2 0.24, p = 0.008), minimum platelets (R2 –0.29,
p = 0.001), and dexamethasone usage (R2 0.42, p < 0.0001). The score signifi-

cantly correlated with duration of neurotoxicity (R2 0.31, p < 0.0001). Interpre-

tation: The EEG immune effector cell-associated neurotoxicity syndrome score

possesses high criterion, construct, and predictive validity, which substantiates

its use as a physiologic method to detect the presence and severity of neurotox-

icity among patients undergoing chimeric antigen receptor T-cell therapy.

Introduction

Chimeric antigen receptor-T (CAR-T) cell therapy is a

powerful treatment for refractory and relapsed hemato-

logic malignancies. However, a substantial proportion of

patients experience toxicity during treatment, in the

forms of cytokine release syndrome (CRS) and/or

immune effector cell-associated neurotoxicity syndrome

(ICANS).1 Occurring in 20–70% of patients,2–5 ICANS is

a clinical syndrome characterized by decreased arousal

and focal neurologic findings that can cause cerebral

edema and death.6–9
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Early and accurate diagnosis of ICANS is paramount to

guide management of both CRS and ICANS. CRS often pre-

cedes and persists concurrently with ICANS, but tocilizu-

mab, a common treatment for CRS, may worsen ICANS.10–12

Dexamethasone is the mainstay of treatment for ICANS

but may diminish the efficacy of CAR-T against the under-

lying malignancy with long-term use.13 As a result, there is

no consensus on the optimal daily dosage of dexametha-

sone for ICANS. These considerations highlight the need

for accurate diagnostics to inform management decisions.

Despite the high prevalence of ICANS, an objective and

easily repeatable biomarker of ICANS has not been estab-

lished. Serum inflammatory markers, such as CRP, LDH,

and ferritin, have been associated with ICANS, but lack

specificity given their elevation in CRS.8,10 CSF profiles

may reveal high levels of IL-6, IL-8, MCP1, and IP10 as

well as a non-specific pleocytosis,6 but invasive testing

limits their use. Neuroimaging, such as CT and MRI, is

typically normal except in severe ICANS leading to cere-

bral edema.1,14,15 Multivariable models have shown prom-

ise in assessing the overall risk of ICANS, but do not

respond to dynamic changes in the grade of ICANS on

the timeframe of hours.16,17 As a result, diagnosis of

ICANS relies upon a standardized bedside neurological

exam7 that remains subjective and resource intensive.

EEG has the potential to serve as a physiologic bio-

marker of ICANS. Patients experiencing ICANS demon-

strate profound qualitative changes in EEG, including

increased delta and theta activity and generalized periodic

discharges (GPDs), with the severity of certain features

correlating with worsening ICANS.18,19 However, small

sample size and qualitative methods have limited the

application of these findings to clinical practice. Neverthe-

less, prior studies have substantiated the use of EEG as a

biomarker in disease states similar to ICANS, such as

toxic-metabolic encephalopathy.20–22

Here, we present the EEG Immune effector cell associated

neurotoxicity syndrome (EICANS) score, a quantitative

method to determine the presence and grade of ICANS from

EEG data through machine learning techniques. We demon-

strate a strong correlation between ICANS grade and

EICANS, demonstrating construct validity, and determine

which EEG features are associated with worsening ICANS.

We also show prominent associations between key clinical

variables and outcomes and EICANS, which corroborates

the construct and predictive validity of our model.

Methods

Study setting and participants

We conducted a multi-center, retrospective observational

cohort study of adult inpatients who underwent long-

term EEG monitoring during hospitalization for CD19 or

B-cell maturation antigen (BCMA) targeted CAR-T cell

therapy at Massachusetts General Hospital (MGH) and

Brigham and Women’s Hospital (BWH) from May 2016

to November 2020. The study was performed under a

protocol approved by the Institutional Review Board

using a waiver of written informed consent.

Clinical data

Generation of daily ICANS grade

Given changes in standardization of ICANS assessment

from 2016 to 2019, for each day of hospitalization, the

ICANS grade was determined through chart review by

two graders according to ASTCT guidelines.7

Statistical analysis of patient characteristics

Quantitative data regarding patient characteristics were

obtained via query of electronic health records. Data was

compared between those with mild to moderate ICANS

(≤2) and severe ICANS (>2), because these thresholds

often have clinical implications for management deci-

sions, such as ICU transfer.1 Quantitative data are

reported as medians (interquartile range) and compared

using Mann–Whitney U tests. Categorical data are

reported as n = counts (percent) and compared with chi-

square tests. Significance level for these tests was defined

as p < 0.05.

EEG dataset

Subjects were identified via chart review of patients who

had a clinical EEG in the medical record and had under-

gone CAR-T cell therapy from 2016 to 2020. Samples

were excluded from the dataset for the following reasons:

(1) EEG prior to CAR-T cell infusion with none after

CAR-T (2) EEG files could not be located within the

server or contained excessive artifact (3) clinical exam

could not be collected due to sedation requirements (4)

EEG occurred greater than 30 days after infusion and

neurological deficits were attributed to other causes by a

neurologist. A maximum of five hospital days with EEG

were utilized per patient to prevent overweighting of a

test fold by a single patient. For those patients with

greater than five EEGs, EEGs were selected semi-randomly

to retain a similar distribution of ICANS grades to the

original EEG files for that patient.

All EEGs were obtained due to clinical concern for

ICANS; therefore, as a control dataset we used age and

sex matched EEGs that were previously interpreted as

normal by neurophysiologist physicians from BWH and
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MGH from 2019 to 2021. For each EEG with a normal

impression, the ICANS level was assigned to 0.

EEG recording, processing, and feature
extraction

EEGs were collected with Ag/AgCL scalp electrodes with

the standard international 10–20 system placed by EEG

technicians. Tracings were re-sampled to 200 Hz, re-

referenced to a bipolar montage, normalized to zero

mean, notch filtered at 60 Hz, and bandpass filtered

(0.5 Hz to 40 Hz).

Given the absence of a timestamp for each daily ICANS

grade, an EEG block was selected to best avoid sleep

(which could contain features considered normal during

sleep but abnormal while awake, such as slowing). The

mean alpha band power (8–12 Hz) across the four frontal

leads was calculated for each 10-min EEG block every 5

min. To determine which 10-min block of EEG to utilize

from 24 h of continuous EEG, the EEG block with the

maximum alpha band power across the 24 h was selected,

provided that this block contained 10% or fewer segments

with artifact. The same algorithm was utilized to select a

portion of each routine EEG with normal impressions.

After pre-processing, the EEG was divided into 10-sec

segments with 8-sec of overlap (i.e., a segment every

2 sec, 10,800 segments) and any segments with artifact

were flagged. EEG artifact were defined based on the pres-

ence of any of the following in any of the EEG leads: (1)

maximum amplitude greater than 1000 lV (2) presence

of NaN, representing when the EEG leads were discon-

nected. Further artifact detection methods were tested

(standard deviation less than 0.2 lV and overly fast

changes of greater than 900 uV in 0.1 s) in a subset of

EEGs but did not yield appreciably different artifact

detection rates, so were omitted to optimize for computa-

tional efficiency. All segments with artifact were removed,

and EEG blocks with less than 10% artifact were trun-

cated, such that all EEG blocks were 9 min in length.

Feature extraction & model training

For each 10-sec epoch, we calculated 94 total features, with

89 features in the time and frequency domains from the

four frontal leads and 5 features derived from 16 bipolar

leads with a convolutional neural network (CNN)-based

model of interictal spectrum features (Table 2). Shoorangiz

et al. (2020) provides an in-depth description of the major-

ity of the time and frequency domain features.23 With the

exception of coherence features between the four frontal

leads, each time and frequency-based feature was extracted

for each frontal lead, then averaged across the frontal leads.

For all time and frequency domain features, the mean

across all 10-sec epochs (265 total epochs) was taken to

yield a single value for each feature per EEG file. For the

CNN-derived features, the CNN model generated the prob-

ability of seizures, GPD, GRDA, LPD, LRDA, and Non-IIIC

patterns for each epoch, summing to one for each epoch.

The median across all epochs was taken to produce the final

value for each CNN-derived feature. The seizure feature

was ultimately excluded from the final model to reduce col-

linearity (given those six features sum to one), as this fea-

ture showed the lowest Spearman’s correlation to ICANS.

We selected the top 20 features based on the training

data for each fold using the F-statistic correlation quotient

(FCQ) variant of the Maximum Relevance-Minimum

Redundancy (MRMR) algorithm to reduce collinearity

among the features, modified to use Spearman’s instead of

Pearson’s correlation.24 Hyperparameters were tuned

through inner five-fold cross validation (within the training

set), and features reduced through LASSO regularization.

Feature extraction and model training was performed

using Python (v = 3.7.0). The periodic and aperiodic

components of the physiological power spectrum were

extracted utilizing the fitting oscillations and one over f

(fooof) module (v = 1.0.0). A subset of univariate fea-

tures (n = 6) were computed using the MNE-features

module (v = 0.2). We performed model training with sci-

kit learn modules (v 1.0.1). Scripts for the FCQ variant of

MRMR were modified from the mrmr_selection module

(v 0.2.2).

Learning-to-rank model training and
evaluation

We utilized a machine learning model known as

Learning-to-Rank (LTR) that transforms an ordinal classi-

fication problem into binary classification (logistic

regression).21,25 The LTR model predicts for each pair of

patients A and B, whether patient A has more severe

ICANS than B. Pairs with equivalent ICANS grades are

excluded during training. The model accepts EEG features

for each sample as input and outputs a score that corre-

lates with the ICANS grade. For each EEG, the model

generates a value for the decision function of the binary

classifier (logistic regression), which we used to calculate

the probability for each grade of ICANS (0–4). The final

EICANS score for each file was the sum of these probabil-

ities weighted by the ICANS grade (0–4) associated with

each probability.

We trained the model with nested five-fold cross vali-

dation, which splits the data into training (80%) and test

(20%) sets five times. The ICANS grades were stratified

so that all test sets contained a similar distribution of

ICANS grades, and data from the same patient were never

split across training and test folds.
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All reported performance metrics reflect the aggregated

test sets of the five outer folds with strict separation of

training and testing data. We utilized Spearman’s R2 and

area under the receiver operator curve (AUC) to discrimi-

nate between binary severity levels of ICANS (i.e., ICANS

≤2 vs. >2). We generated confidence intervals (2.5% &

97.5% percentile as upper and lower bounds) and median

coefficient values through bootstrapping 1000 times. The

significance level for all tests was set at p < 0.05.

Association of ICANS with clinical variables
and outcomes

To assess the clinical relevance of EICANS, we calculated

the Spearman’s correlation between EICANS and clinical

variables, with p-values determined from a t-test with two

degrees of freedom. Clinical variables, including medica-

tions, lab values, vital signs, and duration of hospitaliza-

tion were obtained via query of electronic health records.

Medications included antipsychotics (binary administra-

tion, IV, or PO formulation), dexamethasone (mg, IV, or

PO), and tocilizumab dosage (# of doses) on the day of

EICANS, as well as total dosage of antipsychotics (# of

days), dexamethasone (total mg), and tocilizumab (total #

of doses) over the course of hospitalization.

Results

Patient characteristics

136 patients who had undergone EEG monitoring and

received CART-cell therapy were identified, of which 13

were excluded due to (1) EEG performed prior to, but

not after CAR-T cell therapy (n = 1) (2) inability to

locate raw EEG file or extract at least 9 min of continu-

ous, artifact free EEG (n = 9) 4) inability to obtain

exam consistently off of sedation (n = 2) and 4)

encephalopathy attributed to cause other than ICANS in

patient >30 days from infusion (n = 1). Of these 123

patients, 45 (36.6%) experienced mild to moderate

ICANS (≤2) and 78 (63.4%) exhibited severe ICANS

(>2) during hospitalization (Table 1). Three patients did

not meet our criteria for ICANS on any day of hospi-

talization. Among patients who developed ICANS, the

median time to onset was 6 days (IQR 4–8), similar to

other studies.1,8 Median duration of ICANS was higher

among those with severe ICANS (13 days, IQR 9–19) as

compared to mild to moderate ICANS (5, IQR 3–8,
p < 0.0001), as was length of stay (median 24 vs.

20 days, p = 0.0002)). At 1-year post discharge, a higher

but non-significant proportion of patients with severe as

compared to mild to moderate ICANS were deceased

(33 vs. 10, p = 0.07), with 23 patients with unknown

status at 1 year. There was no significant difference in

the distribution of sex, race, ethnicity, or malignancy

between those with mild to moderate vs. severe ICANS.

All patients were receiving an anti-seizure medication at

the time of the EEG, with the majority (99.2%) on

levetiracetam, one patient on lacosamide (3/5 EEG sam-

ples), and one patient on phenytoin (4/4 EEG samples).

3.25% (4/123) of patients received propofol on the day

of EEG and 8.94% (11/123) of patients received a dose

of lorazepam (10/123) or midazolam (1/123) on the

day of EEG.

EEG dataset

From these 123 patients, we extracted one EEG sample

per day with a maximum of 5 EEG samples per patient,

totaling 286 EEG samples (median # samples per patient

of 1 (IQR 1)). 184 (64.3%) EEG samples were collected

during mild to moderate ICANS and 102 (35.7%) EEG

samples during severe ICANS with a median ICANS of 2

(IQR 2) excluding control cases. All non-control EEGs

were obtained due to concern for ICANS, indicating some

degree of encephalopathy likely not captured by the day’s

ICANS even if graded as 0. The mean day of EEG sample

relative to CAR-T cell infusion date was 11.05 (� SD

6.25), and the mean day of EEG sample relative to first

day of ICANS was 5.00 (�SD 5.28). As controls, the data-

set was supplemented with 123 age and gender matched

normal EEGs, resulting in 409 EEG samples utilized in

the LTR model. EEGs from patients with differing grades

of ICANS showed substantial qualitative differences,

including within the same patient with ICANS 1 as com-

pared to grade 2 (Fig. 1).

Criterion validity of EICANS, a physiological
assessment of ICANS grade

For each EEG sample, we utilized the LTR model to pro-

duce a physiological assessment of ICANS grade: the Elec-

troencephalographic ICANS (EICANS) score. EICANS

scores possessed high criterion validity for ICANS, as

shown by a significant correlation with the clinical ICANS

grade from the same hospital day with a median Spear-

man’s R2 of 0.69 (95% CI of 0.59–0.77) on the aggregated

test sets (Fig. 2A). In addition, for each binary discrimi-

nation level (ICANS ≤ x vs > x, for x = 1, 2, and 3), the

mean area under the curve across all bootstraps was

greater than 0.85 (Fig. 2B), although there was greater

variability for discrimination at ICANS grade ≤3 vs. > 3

likely due to the low number of samples with ICANS >3
(n = 7). The receiver operating curve for discrimination

of ICANS ≤2 vs. >2 for each bootstrap and the mean is

shown in Fig. 2 (inset), with sensitivity of 85% and
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specificity 82% at the optimal cutoff point. The mean

absolute error was higher for ICANS >2 (0.86) than

ICANS ≤2 (0.69), and there was a significant Spearman’s

correlation (0.26, p < 0.0001 between absolute error and

maximum ICANS during hospitalization.

EEG features that predict ICANS

We examined the importance of individual quantitative

EEG features in predicting ICANS. All features in the

model with a median weight greater than or equal to 0.1

Total

(n = 123)

ICANS ≤2

(n = 45)

ICANS >2

(n = 78) p-value

Quantitative data1,2: unique subjects

Age, years: Median (IQR) 64 (54–69) 62 (58–68) 65.5 (52–70)

Length of stay (days): Median (IQR) 21 (17–30) 20 (16–27) 24 (18–32.5) 0.0002*

Duration ICANS >0: Median (IQR) 10 (5–17) 5 (3–8) 13 (9–19) <0.0001*

Categorical data1,3: unique subjects

Sex4 0.815

Male: n (%) 79 (64.2%) 30 (66.6%) 49 (62.8%)

Female: n (%) 44 (35.7%) 15 (33.3%) 29 (37.2%)

Race4 0.463

Asian: n (%) 4 (3.3%) 0 (0%) 4 (5.1%)

Black: n (%) 2 (1.7%) 1 (2.3%) 1 (1.3%)

White: n (%) 111 (90.2%) 42 (95.5%) 69 (88.5%)

Other or Unknown: n (%) 6 (4.8%) 2 (4.4%) 4 (5.1%)

Ethnicity4 0.418

Hispanic: n (%) 3 (2.4%) 2 (4.4%) 1 (1.3%)

Non-Hispanic: n (%) 114 (92.7%) 40 (88.8%) 74 (94.9%)

Unavailable: n (%) 6 (4.9%) 3 (6.6%) 3 (4.0%)

Malignancy4 0.417

DLBCL: n (%) 106 (86.2%) 42 (95.5%) 64 (83.1%)

PMBCL: n (%) 5 (4.1%) 0 (0%) 5 (6.5%)

MCL: n (%) 2 (1.6%) 0 (0%) 3 (3.9%)

FL: n (%) 4 (3.3%) 2 (4.5%) 2 (2.6%)

MZL: n (%) 1 (0.8%) 0 (0%) 1 (1.3%)

B-ALL: n (%) 2 (1.6%) 0 (0%) 2 (2.6%)

Aggressive: n (%) 117 (95.1%) 43 (95.6%) 74 (94.9%)

Indolent: n (%) 6 (4.9%) 2 (4.4%) 4 (5.1%)

One-year post discharge4 0.070

Deceased: n (%) 43 (35.0%) 10 (22.2%) 33 (42.3%)

Alive: n (%) 57 (46.3%) 35 (77.8%) 44 (56.4%)

Unknown: n (%) 23 (18.7%) 9 (20.0%) 14 (17.9%)

Anti-seizure medications (ASM)4

On any ASM: n (%) 123 (100%) 45 (100%) 78 (100%)

Keppra: n (%) 122 (99.2%) 44 (97.8%) 78 (100.0%) 0.780

Lacosamide: n (%) 3 (0.02%) 0 (0.0%) 3 (0.04%) 0.468

Phenytoin: n (%) 1 (0.01%) 1 (0.02%) 0 (0.0%) 0.780

Lorazepam: n (%) 10 (0.08%) 4 (0.09%) 6 (0.08%) 0.914

Midazolam: n (%) 1 (0.01%) 0 (0.0%) 1 (0.01%) 0.780

Anti-seizure sedation4

Propofol: n (%) 4 (0.03%) 0 (0.0%) 4 (0.05%) 0.310

Continuous midazolam: n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

1Dataset includes 123 individual subjects who received CAR-T cell therapy.
2Quantitative data are shown as medians (IQR) or means (SD) and compared using Mann–Whitney

U tests. The significance level for all tests was set at p < 0.05, indicated by *.
3Categorical data are shown as n = counts (percent) and compared using v2 tests. The significance

level for all tests was set at p < 0.05, indicated by *.
4Demographic data (age, sex, race, and ethnicity), subtype of malignancy, and death at 1-year post

discharge are based on information extracted from the electronic health record.

Table 1. Patient Characteristics according

to ICANS grade ≤2 as compared to >2.
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(n = 12) are visualized in Figure 3. Generalized periodic

discharges (GPDs), generalized rhythmic delta activity

(GRDA), and bandpower (4–6 Hz) were the strongest

positive predictive features, while coherence of delta activ-

ity between leads Fp2-F8 and F7-F8 and the Hurst expo-

nent were strong negative predictive features. The Non-

IIIC spectrum feature, which denotes EEG without evi-

dence of potential epileptiform activity, was a negative

predictor of EICANS.

Association of EICANS with clinical variables
and outcome

We investigated the construct and predictive validity of

EICANS scores through Spearman’s correlations with

clinical outcomes of interest (Fig. 4). The maximum

EICANS per patient correlated with inflammatory

markers previously associated with ICANS, including a

significant correlation with the maximum serum ferritin

(R2 0.24, p = 0.008) and minimum serum platelets (R2 –
0.29, p = 0.001). The maximum EICANS also significantly

correlated with dexamethasone dosage on the day of

EICANS (R2 0.37, p < 0.0001) and total dexamethasone

(R2 0.42, p < 0.0001) and antipsychotics (R2 0.19,

p = 0.04) during hospitalization. EICANS was associated

with the duration of ICANS during hospitalization (R2

0.31, p = 0.0004) but was not correlated with death by 1

year post discharge (R2 0.01, p = 0.84). Maximum ICANS

during EEG recording did not significantly correlate with

death at 1 year post discharge (R2 0.12, p = 0.14).

Discussion

In this retrospective study, we developed the EICANS

score, a physiologic method to assess ICANS through

EEG. Our demonstration of criterion, construct, and pre-

dictive validity establishes EICANS as a viable metric of

ICANS that quantifies the presence and severity of ICANS

among patients undergoing CAR-T cell therapy.

The correlation of EICANS and ICANS substantiates

the criterion validity of our model, in that the EICANS

agrees with the clinical gold standard, as defined by the

ASTCT. The receiver operating curve shows substantial

sensitivity and specificity in distinguishing mild and mod-

erate as compared to severe ICANS, an important clinical

threshold in decisions regarding diagnostic work-up and

treatment.1 The correlation between absolute error and

maximum ICANS, as well as higher MAE among patients

Table 2. Characteristics of extracted quantitative EEG features utilized in model.

Domain Feature Number Remark

Time Standard deviation, variance, mean absolute gradient,

zero crossing rate, Hjorth mobility, Hjorth complexity,

Hurst exponent (60 s & whole sample), skew,

kurtosis, Higuchi fractal dimension, Katz fractal

dimension

13 Mean across all 10-second epochs, generated from

four frontal leads

Frequency Mean power, spectral entropy, spectral edge

frequencies: SEF95 and SEF5

4 Mean across all 10-second epochs, generated from

four frontal leads

Power Spectral Density (PSD) of different frequency

bands and band-ratios, calculated for the PSD value

in dB, with std. Calculated separately for different

frequency bands and the band-ratios (e.g., PSD delta/

PSD alpha)

21 9 2 = 42 Delta: 0.5–2, 0.5–4, 2–4 Hz

Theta: 4–6 Hz, 4–8, 6–8 Hz

Alpha: 8–10, 8–12, 10–12 Hz

Beta: 12–20 Hz

All: 0.5–20 Hz

Ratios: theta/delta, alpha/delta, alpha/theta, beta/

delta, beta/theta, beta/alpha

Mean across all 10-second epochs, generated from

four frontal leads

Coherence for different frequency bands 24 Alpha (8–12 Hz), beta (12–20 Hz), theta (4–8 Hz),

and delta (0.5–4 Hz).

Mean across all 10-second epochs, generated from

comparisons between each of four frontal leads

FOOOF parameters: max amplitude, max frequency,

max bandwidth, number of peaks, broadband offset,

and exponent of aperiodic fit

6 FOOOF parameterizes neural power spectra

Mean across all 10-second epochs, generated from

four frontal leads

CNN derived GPD, GRDA, LPD, LRDA, Non-IIC 5 Median across all 10-second epochs, generated

from 18 leads

Total number of

features per EEG

94
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with more severe ICANS suggests less accuracy for more

severe as compared to mild ICANS. This may suggest a

tendency to underestimate ICANS in its most severe

form, which likely arose due to fewer patients with

ICANS of grade 3 or 4. Given that bedside detection of

ICANS is more difficult with more mild ICANS, this

greater accuracy with mild ICANS is likely more clinically

relevant for patient care.

The EICANS model also exhibits construct validity, in

that EICANS scores correlate with clinical variables asso-

ciated with ICANS in prior studies.8,10,26 Serum ferritin

and dexamethasone use showed significant positive

associations with EICANS. Minimum platelets during

hospitalization exhibited a significant negative correlation

with EICANS, which corroborates prior work indicating

an association between lower platelet nadir and higher

risk of ICANS, likely due to endothelial activation and

resultant platelet consumption.16,26 Other inflammatory

markers, such as CRP and procalcitonin, showed positive

associations, but may not have reached significance due

to the bias of the dataset, in which only CAR-T patients

who developed ICANS underwent EEG. Antipsychotic

usage throughout hospitalization also correlated with

EICANS, which likely arises from behavioral management

Figure 1. EEG shows qualitative differences associated with worsening ICANS. An example of an EEG (3 second window, bipolar montage) from

the same patient exhibiting ICANS grade 1 (A) as compared to grade 2 (B). With more severe ICANS, this patient’s EEG demonstrated more

pronounced delta and theta slowing.
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of ICANS. Tocilizumab did not show a clear relationship

with EICANS, which may reflect the conflicting findings

regarding the extent of tocilizumab’s effect on ICANS

when administered with concurrent steroids.6

We show the predictive validity of the model through

the significant correlation between EICANS and duration

of ICANS. Although there was a trend towards an associ-

ation between severe ICANS and death at 1-year post dis-

charge (Table 1), this association was not observed with

EICANS or the maximum ICANS from days with EEG

monitoring. This likely reflects the timing of EEG record-

ing, in that EEGs were often collected during the first few

days of ICANS, such that the maximum EICANS for the

patient may not have matched the maximum ICANS over

the entire hospitalization. Changing standards of ICANS

care over the course of the study from 2016 to 2020,

including clinical willingness to use dexamethasone and

duration of admissions during early use of CAR-T cell

therapy may have also affected our analysis of outcomes.

In addition to the EICANS grade, our model provides

insights into EEG features indicative of ICANS, which

expand upon prior qualitative EEG studies. Similar to

delirium,21,22,27 worsening ICANS has been correlated

with slowing of the EEG.6,8,10,18,28 However, the final

model often did not incorporate low bandpass power fre-

quencies (i.e., 0–2, 0–4) into EICANS, due to high collin-

earity with other retained predictive features. In contrast,

spectral power in the theta range (4–6 Hz) was frequently

retained with high median weight, indicating that this fea-

ture may discriminate among degrees of ICANS to a

greater degree than the lower bandpass frequencies—a

novel finding. The next most prominent features in our

model, GPDs and GRDA, have also been shown to corre-

late with ICANS,18,28 particularly with language

dysfunction,19 but prior work has not quantified these

features or done so in an automated fashion. Lateralized

periodic discharges (LPDs) and lateralized rhythmic delta

activity (LRDA) did not contribute to the final EICANS

model, likely due to low correlation with ICANS rather

than collinearity with other features, which is in contrast

to a prior study that had suggested that these features

highly correlate with ICANS with focal findings.28 This

discrepancy may have arisen due to a low rate of LPD

and LRDA within our dataset, or patients with LPD and

LRDA may reflect a subset clinical phenotype of ICANS

not captured by the overall grade.

Among the negative predictive features of ICANS, the

Non-IIIC feature is the most clinically intuitive result, in

that this feature quantifies the absence of epileptiform

patterns like seizures, rhythmic patterns, and periodic dis-

charges. The Hurst exponent captures the long-term cor-

relation structure (“memory”) of a time series signal,

with higher values indicating less volatility. Its role as a

negative predictor in our model corroborates prior EEG

findings in toxic-metabolic encephalopathy, in which high

variability was associated with more severe delirium.21

This overlap of prominent EEG features between

ICANS and toxic metabolic encephalopathy may indicate

underlying similarities in pathophysiology. Although not

entirely understood, the systemic inflammatory state

induced by CAR-T is thought to cause endothelial activa-

tion and blood–brain barrier breakdown.1,10 Similar

changes in inflammation and blood brain barrier perme-

ability have been demonstrated in sepsis and COVID,

which can feature neurological changes similar to

ICANS.29,30 Due to these similarities, EEG may not be

able to distinguish toxic-metabolic encephalopathy sec-

ondary to infection from encephalopathy related to CAR-

T cell therapy without additional clinical data (i.e., cul-

ture and laboratory data). Timing may also inform inter-

pretation; although there is no strict cutoff past which

ICANS cannot be diagnosed, the median time to emer-

gence is 5 days,8 with clinical suspicion for other etiolo-

gies of encephalopathy increasing with greater time from

infusion.

These findings possess notable limitations. The retro-

spective nature of the study meant that EEG data was

only available from patients in whom providers clinically

suspected ICANS. Due to the time interval between

ordering an EEG and obtaining recordings, the dataset

includes EEG samples from patients with an ICANS of 0,

despite clinical suspicion for ICANS. This reflects the

dynamic nature of ICANS, but also highlights the possi-

bility of subtle encephalopathy not captured by the stan-

dardized clinical exam. It is possible that our control

subjects, despite being matched for age and sex, could

have some differences from EEG findings in patients

undergoing CAR-T cell therapy who do not develop

Figure 2. Criterion validity of EICANS. (A) Distribution of EICANS as compared to ICANS. The EICANS generated from the aggregated test folds

shows a strong correlation with ICANS. The box plot (blue) shows the distribution of EICANS (y-axis) according to ICANS grade (0–4) (x-axis), with

three quartile values (blue box) and values within 1.5 IQRs of the lower and upper quartile (black whiskers). The overlying points (gray) show each

value of EICANS produced within the test folds of the model. (B) Area under the receiver operating curve for each comparison level of ICANS.

The mean area under the receiver operating characteristic curve (AUROC) (y-axis) using EICANS to discriminate each level of ICANS (≤ x vs. > x for

x = 0, 1, 2, & 3) (x-axis), with shading indicating the 95% confidence intervals for all bootstraps. The inset shows the mean and all bootstraps for

the receiver operating characteristic (ROC) curve for ICANS ≤2 as compared to >2.
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ICANS. For patients with severe ICANS, sedation require-

ments certainly affect the EEG, but this likely did not

affect the model given the minority of patients receiving

propofol or continuous midazolam. Two patients were

also excluded due to inability to lift sedation and obtain a

clinical exam. CAR-T cell therapy patients often have

Figure 3. Median coefficient values of most highly weighted features. From the top 20 features most often selected by the Maximum Relevance-

Minimum Redundancy algorithm for inclusion in the model, a boxplot shows all features (y-axis) with an absolute median coefficient value greater

than 0.1, including negative (red) and positive (blue) weights. The boxes (x-axis) represent the three quartile values and the whiskers indicate the

1.5 IQRs of the lower and upper quartile.
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medical comorbidities, such as febrile neutropenia, which

may render their baseline EEG without ICANS different

from those of our matched controls. The gold standard

for the machine learning model relied upon a chart

review-constructed ICANS grade, which could be liable to

noise. Given the ICANS grade was assessed via clinical

notes, the precise timing of examinations was not

recorded. Due to this, the 9-min EEG sample selected

from 24 h of continuous EEG monitoring may not have

always occurred while the patient was experiencing the

same degree of symptoms as reflected in the day’s ICANS

grade. Lastly, ICANS is a clinical syndrome defined by a

subjective assessment, such that any model of ICANS will

be trained with a potentially fallible gold standard.

Figure 4. Spearman’s correlations of EICANS and clinical variables. A bar plot shows the Spearman’s correlations (y-axis) between the maximum

EICANS per patient (n = 123) and clinical variables during each patient’s hospitalization, including laboratory values, vitals, medications, and

outcomes (death by 1 year post-discharge, length of stay, and duration of ICANS) (blue = positive coefficient value, red = negative coefficient

value). Max refers to the maximum value of the laboratory or vital sign value during hospitalization up to and including the day that the EICANS

was assessed.
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However, through incorporation of objective data and

training over large enough datasets, models such as these

can begin to overcome this subjectivity to enhance reli-

ability of diagnosis among providers. Despite these limita-

tions, EICANS showed a strong, clinically significant

correlation with ICANS, which substantiates the potential

of this EEG-based method to dynamically assess ICANS

severity.

Patients undergoing CAR-T cell therapy often have

substantial medical comorbidities, such that their baseline

EEGs may be abnormal in the absence of CNS involve-

ment of their malignancy. Similar to patients with sepsis

without neurological exam changes,31,32 patients with

CRS may also demonstrate subtle EEG changes, despite

no apparent change in clinical exam, due to the profound

inflammatory state. This sensitivity of EEG highlights its

potential to predict ICANS. Future studies may advance

these results through a prospective design with time-

stamped clinical exams and baseline EEGs prior to CAR-

T cell administration. This design would permit analysis

of EEG predictors of ICANS prior to the emergence of

ICANS, including duration and severity, as well as better

assess the specificity of EEG changes during CRS alone

versus ICANS. By obtaining EEG prior to CAR-T cell

infusion, a more sophisticated model based on compari-

son to the patient’s baseline could also be explored. Mod-

ification of the CNN-derived features to require only four

frontal leads, similar to the majority of the current

model’s features, would also allow deployment of EICANS

with simplified devices that do not require technician

application.33 Such algorithms could in turn facilitate the

use of EEG and CAR-T cell therapy outside of specialized

academic centers.

CAR-T cell therapy is a powerful oncologic treatment

with the potential for wider adoption, given promising

studies of its use in refractory autoimmune conditions34

as well as malignancy. An objective method to assess

ICANS such as EICANS may increase utilization of CAR-

T cell therapy, enhance management of the condition,

and reduce length of hospital stay.
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